Thyroid hormone resistance in two patients with papillary thyroid microcarcinoma and their BRAFV600E mutation status

Melia Karakose¹, Mustafa Caliskan¹, Muyesser Sayki Arslan¹, Erman Cakal¹, Ahmet Yesilyurt², Tuncay Delibasi¹,³

SUMMARY
Resistance to thyroid hormone (RTH) is a rare autosomal dominant hereditary disorder. Herein, we report two patients with RTH in whom differentiated thyroid cancer was diagnosed. Two patients were admitted to our clinic and their laboratory results were elevated thyroid hormone levels with unsuppressed TSH. We considered this situation thyroid hormone resistance in the light of laboratory and clinical datas. Thyroid nodule was palpated on physical examination. Thyroid ultrasonography showed multiple nodules in both lobes. Total thyroidectomy was performed. The pathological findings were consistent with papillary thyroid microcarcinoma. BRAFV600E mutation analysis results were negative. RTH is very rare and might be overlooked. There is no consensus on how to overcome the persistently high TSH in patients with RTH and differentiated thyroid cancer (DTC). Further studies are needed to explain the relationship between RTH and DTC which might be helpful for the treatment of these patients. Arch Endocrinol Metab. 2015;59(4):364-6

CASE REPORTS

Case 1
A 56-year-old Turkish women was referred to internal medicine because of the detection of multinodular goiter in physical examination. Subtotal thyroidectomy was performed because of multinodular goiter 20 years ago. She was admitted to our clinic and her laboratory results were detected as follows; TSH: 2.81 mU/L/mL (range, 0.55-4.78), free T4 (fT4): 2.45 ng/dL (range, 0.74-1.52), free T3 (fT3): 6.2 pg/mL (range, 2.3-4.2), anti-thyroglobulin antibody (anti-TG) and anti-thyroperoxidase (anti-TPO) antibody were negative. She had no signs or symptoms of typical thyrotoxicosis. MRI scan did not detect the presence of a pituitary tumor. TSH showed exaggerated response to thyrotropin-releasing hormone and was suppressed following T3 administration. The α-subunit of
TSH was normal (0.76 IU/L, range, 0-1.6). The patient also underwent testing for THRβ gene, which showed a missense mutation in exon 8 (A234D; c.701C>A). The patient was diagnosed as RTH in the light of laboratory and clinical datas.

Thyroid nodule was palpated on physical examination. Thyroid ultrasonography showed multiple nodules in both lobes. A fine-needle aspiration biopsy (FNAB) was performed and cytological examination showed ‘atypical of undetermined significance’. Total thyroidectomy was performed. Pathologic examination revealed papillary thyroid microcarcinoma, tumor size was 0.2 cm (right lobe). Histologic sections of the tumor tissue are very small so that the BRAF mutation could not be analyzed. As the patient was considered at “very low risk” for an adverse clinical course of her thyroid cancer, ablative doses of radioactive iodine were not administered. Levothyroxine therapy was adjusted and the dose was gradually increased up to 200 µg/day. After two months, her TSH level was 84 mU/L, whereas the fT4 level was 2.33 ng/dL and she complained for the symptoms of hyperthyroidism; therefore, we decreased the dose of levothyroxine to 150 µg/day and her symptoms of hyperthyroidism was disappeared.

For to ensure the TSH suppression triiodotironin 50 µg/day was added to treatment and levothyroxine was reduced to 150 µg/day. After two months, TSH level and fT4 level were 23.6 mU/L and 1.11 ng/dL, respectively. We increased the dose of levothyroxine to 150 µg/day and control appointment arranged for two months later.

DISCUSSION

RTH has been described by Refetoff in 1967 (10). The cause is mostly mutations in TRβ gene and inheritance of RTH is autosomal dominant (1,2). Those patients who present with goiter and elevated thyroid hormone levels with unsuppressed TSH must be investigated for RTH. The main differential diagnosis to be excluded is inappropriate TSH secretion from a pituitary tumor (TSHoma). The normal level of the TSH α-subunit, a normal MRI of the pituitary gland, an exaggerated response of TSH to a thyrotropin-releasing hormone stimulation test and TSH suppression after T3 administration favor the RTH.

The point mutations in the THRβ gene are found in about 90% of RTH cases. Our two cases have same mutations in the regions of the THRβ gene (exon 8; A234D; c.701C>A). This mutation had not been previously reported as being associated with RTH in the literature. This is a novel heterozygous missense mutation discovered by our clinic. Also Ünlütürk and cols. from Turkey reported a case of RTH with thyroid cancer which have a single nucleotide substitution (T>C) in codon 334 in THRβ gene (11).

PTC is the most common histological type of thyroid malignancy and the rising incidence of thyroid cancer is mainly attributed to the increased diagnosis of PTC, particularly the small micro PTC (12,13). BRAFV600E mutation is the most common genetic alteration in thyroid cancer, and found in about 45% of papillary thyroid cancers (14). Our in the first case, we...
did not evaluate BRAFV600E mutation because of the small histopathologic cross-sections but in the second case BRAFV600E mutation was negative. High serum TSH levels, typically described in RTH, are associated with increased risk of thyroid malignancy (15). Whereas suppression of TSH levels are recommended as adjunctive treatment in differentiated thyroid cancer (16).

There are case reports related with the association of the RTH and PTC in the literature (5,6). In these cases, clinical euthyroidism with levothyroxine replacement has been achieved but TSH suppression was not occurred. When the dose of levothyroxine was increased, in those patients hyperthyroidism symptoms (tachycardia, anxiety) occurred, so levothyroxine dose was decreased. In two cases, with the addition of T3 to the treatment TSH levels decreased to the normal range (17,18). There are also papers related with suppression of TSH with thyroid hormone analogs, such as triiodothyroacetic acid (TRIAC) in RTH (19,20). TRIAC might be an alternative drug in RTH with DTC to suppress TSH so much peripheral tissue effect.

In conclusion, there are two situation that need to be explained; one of them is whether patients with RTH are at an increased risk for thyroid cancer and the other one is whether thyroid cancer is more aggressive in patients with RTH because of the difficulty in suppressing serum TSH concentration. TSH suppression has been considered as the key step of DTC treatment after total thyroidectomy and radioactive iodine therapy. TSH suppression may not be obtained despite increasing doses of L-T4 in a patient with RTH. There is no consensus on how to overcome the persistently high TSH in patients with RTH and DTC. Further studies are needed to explain the relationship between RTH and DTC which might be helpful for the treatment of these patients.

Disclosure: no potential conflict of interest relevant to this article was reported.

REFERENCES